資料4-1

第8回

# 構造物の経年劣化と 耐震評価に関する検討

#### 平成25年10月25日 新潟工科大学

国内軽水炉プラントの約1/3の運転期間が30年を超えている。供用年数の増加に 伴い、配管等においては、き裂の存在が報告されている。また、国内軽水炉プラントで は近年、幾つかの大きな地震を経験している。特に東北地方太平洋沖地震・福島第 一原子力発電所の事故以降、高経年化プラントの耐震安全性について国民の関心が 益々高まっている。このような背景から、高経年化を考慮した耐震安全評価手法及び 確率論的解析評価技術の整備は非常に重要な課題である。本研究の成果は既設プ ラントの耐震安全評価、経年化を考慮したリスク評価に資するものである。

本研究では一部沸騰水型原子力発電所で応力腐食割れ(以下、「SCC」という。)に よるき裂の存在が確認された原子炉再循環系配管を念頭に、大地震による荷重条件 が作用された場合のき裂進展評価手法の妥当性を確認し、その高度化を図ることを 目的とする。

IGSCCき裂

**30**年を超えて運転される原子力プラントの 中には粒界型応力腐食割れ(Inter granular Stress Corrosion Cracking, IGSCC)き裂の発生が報告さ れている。





粒界進展型SCC



本年度は、これまでの成果を踏まえ、試験及び解析的な検討を行い、き裂進展評価手法の確立を図る。





#### 試験片レベルでIGSCCき裂を再現



### き裂進展試験手順



### SCC予き裂からのき裂進展挙動







### 実機と実験の腐食環境の相違



副疲労き裂の影響で、き裂進展速度を過度に低く評価している可能性

IGSCCき裂がLCF負荷を受けた際の き裂進展挙動を、より実機を模した環 境で、実験的に検討した。 加えて、FEM解析を用いて分岐き裂の 進展挙動を検討した。



#### LCFき裂進展挙動

分岐き裂の影響はあまり認められなかった.

進展試験開始直後の200cycleは評価できていない。

→ 遅延はすぐに消失

例外:

SCC-LCF4 全体的に進展速度の遅延









#### FEMによるき裂進展シミュレーション



### 主き裂前方の微視き裂の影響



# 主き裂前方に 微視き裂が存在する場合 主き裂進展速度に及ぼす 微視き裂の 大きさ, 分布, etc. の影響

#### → FEM解析で検討

今後の予定

## ●CCT試験片, CT試験片を用いたき裂進展試験 ● 分岐・屈曲を伴うIGSCCき裂の 低サイクルき裂進展挙動を明らかにする 特に, き裂進展初期段階に注目して.

- ●FEM解析
  - →き裂進展に及ぼす分岐き裂の影響 主き裂前方の微視き裂の影響 (解析に用いる材料物性値を取得)